Project systems theory

Resit exam 2018-2019, Friday 12 April 2019, 14:00-17:00

Problem 1

$(6+8+4=18$ points $)$
Consider the model of population dynamics given by

$$
\begin{align*}
& \dot{x}_{1}(t)=\left(\beta_{1}-F(x(t))\right) x_{1}(t), \\
& \dot{x}_{2}(t)=\left(\beta_{2}-F(x(t))\right) x_{2}(t), \tag{1}\\
& \dot{x}_{3}(t)=\left(\beta_{3}-F(x(t))\right) x_{3}(t),
\end{align*}
$$

where $x_{i}(t) \in \mathbb{R}, i=1,2,3$ denote the populations of three species and $x=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{\mathrm{T}}$. Here,

$$
\begin{equation*}
F(x)=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}, \tag{2}
\end{equation*}
$$

for real parameters $\alpha_{i}>0, i=1,2,3$, denotes the total burden on the environment and $\beta_{i}>0$, $i=1,2,3$, denote the natural growth rates for each species. They are assumed to satisfy

$$
\begin{equation*}
\beta_{1}>\beta_{2}>\beta_{3}>0 \tag{3}
\end{equation*}
$$

(a) Apart from the trivial equilibrium $\bar{x}=0$, show that any other equilibrium point is necessarily of the form $\bar{x}_{i}>0$ for some $i \in\{1,2,3\}$ and $\bar{x}_{j}=0$ for $j \neq i$.
(b) Consider the equilibrium

$$
\bar{x}=\left[\begin{array}{lll}
\frac{\beta_{1}}{\alpha_{1}} & 0 & 0 \tag{4}
\end{array}\right]^{\mathrm{T}}
$$

and linearize the system around this equilibrium point.
(c) Is the linearized system (asymptotically) stable?

Problem 2

$$
(4+12+6=22 \text { points })
$$

Consider the linear system

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t) \tag{5}
\end{equation*}
$$

with state $x(t) \in \mathbb{R}^{3}$, input $u(t) \in \mathbb{R}$, and where

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \tag{6}\\
0 & -1 & 1 \\
0 & -1 & -3
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

(a) Is the system controllable?
(b) Find a nonsingular matrix T and real numbers $\alpha_{1}, \alpha_{2}, \alpha_{3}$ such that

$$
T^{-1} A T=\left[\begin{array}{ccc}
0 & 1 & 0 \tag{7}\\
0 & 0 & 1 \\
\alpha_{1} & \alpha_{2} & \alpha_{3}
\end{array}\right], \quad T^{-1} B=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

(c) Use the matrix T from problem (b) to obtain a state feedback of the form $u=F x$ such that the closed-loop system matrix $A+B F$ has eigenvalues at $-2,-2$, and -3 .

Consider the linear system

$$
\dot{x}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \tag{8}\\
0 & 0 & 1 \\
-2 b & -b & -a
\end{array}\right] x(t)
$$

where $a, b \in \mathbb{R}$. Determine the values of a and b for which the system is (asymptotically) stable.

Problem 4

$$
(4+4+4+8=20 \text { points })
$$

Consider the linear system

$$
\dot{x}(t)=\left[\begin{array}{ccc}
1 & 2 & 0 \tag{9}\\
2 & -4 & 7 \\
1 & -4 & 6
\end{array}\right] x(t), \quad y(t)=\left[\begin{array}{lll}
1 & -2 & 2
\end{array}\right] x(t) .
$$

(a) Is the system (9) observable?
(b) Give a basis for the unobservable subspace of the system (9).

In the remainder of this problem, consider the linear system

$$
\dot{x}(t)=\left[\begin{array}{cc}
a-3 & 8-2 a \tag{10}\\
0 & 1
\end{array}\right] x(t)+\left[\begin{array}{c}
2 a \\
a
\end{array}\right] u(t),
$$

with a a real parameter.
(c) Determine all values of a for which the system (10) is controllable.
(d) Determine all values of a for which the system (10) is stabilizable.

Problem 5

Consider the linear system

$$
\begin{equation*}
\dot{x}(t)=A x(t), \quad y(t)=C x(t) \tag{11}
\end{equation*}
$$

with $x(t) \in \mathbb{R}^{n}, y(t) \in \mathbb{R}^{p}$, and A and C real matrices. Recall that a matrix $X \in \mathbb{R}^{n \times n}$ is called positive definite if $v^{*} X v>0$ for all complex $v \neq 0$ and with v^{*} the Hermitian transpose of v.

Assume that the matrix pair (A, C) is observable and that there exists a positive definite symmetric matrix X that solves the matrix equation

$$
\begin{equation*}
A^{\mathrm{T}} X+X A+C^{\mathrm{T}} C=0 \tag{12}
\end{equation*}
$$

Prove that this implies that $\sigma(A) \subset \mathbb{C}_{-}$, i.e., the system is (asymptotically) stable.
Hint. Use the eigenpair (λ, v) satisfying $A v=\lambda v$ and note that this implies $v^{*} A^{\mathrm{T}}=\bar{\lambda} v^{*}$ with $\bar{\lambda}$ the complex conjugate of λ.

[^0]
[^0]: (10 points free)

